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Long-Time Tails, Weak Localization, and Classical
and Quantum Critical Behavior
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An overview is given of the long-time and long-distance behavior of correlation
functions in both classical and quantum statistical mechanics. After a simple
derivation of the classical long-time tails in equilibrium time correlation func-
tions, we discuss analogous long-distance phenomena in nonequilibrium classi-
cal systems. The paper then draws analogies between these phenomena and
similar effects in quantum statistical mechanics, with emphasis on the soft
modes that underly long-time tails and related phenomena. We also elucidate
the interplay between critical phenomena and long-time tails, using the classical
liquid-gas critical point and the quantum ferromagnetic transition as examples.

KEY WORDS: Long-time tails; generic scale invariance; weak localization;
critical behavior; quantum phase transitions

1. INTRODUCTION

It has been known for some time that equilibrium time correlation func-
tions generically show a power-law temporal decay in the limit of long
times. If this behavior is not obviously related to any conservation law, or
to soft modes in the system, long-time tails (LTTs) is the term traditionally
applied to this phenomenon. Boltzmann-type kinetic equations usually
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Fig. 1. Normalized velocity autocorrelation function p, ()= <{v(z)-v(0)>/<{v*(0)> as a
function of the dimensionless time ¢* = ¢/¢,, where ¢, is the mean-free time. The crosses indi-
cate computer results obtained by Wood and Erpenbeck, see ref. 4, for a system of 4000 hard
spheres at a reduced density corresponding to ¥ /¥, = 3, where V is the actual volume and ¥,
is the close-packing volume. The dashed curve represents the theoretical curve p,(¢) =
ap (1*)7¥2 The solid curve represents a more complete evaluation of the mode-coupling
formula with contributions from all possible hydrodynamic modes and with finite-size correc-
tions included, see ref. 5. From ref. 6.

predict an exponential decay in time, which is why the discovery of LTTs
came as a considerable surprise. An example is the velocity auto-correla-
tion function in a hard-sphere fluid, which is shown in Fig. 1. In accord
with the Boltzmann-Enskog equation, initially the decay is exponential,
with a time scale given by the mean-free time #, between particle collisions.
However, for longer times, t>>t,, it decays algebraically, as ¢~*/2 and
more generally as ¢~/? in d-dimensions. This striking result was first
observed in computer simulations by Alder and Wainwright,’ and then
understood theoretically by Dorfman and Cohen,® and by Ernst, Hauge,
and van Leeuwen.® The velocity autocorrelation function is of particular
importance because it determines the frequency-dependent self-diffusion
coefficient D(w) via

1o
D(w) = L dt e v(t) - v(0)). (1)
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Here v(¢) is the velocity of a tagged particle at time ¢, and the angular
brackets denote an equilibrium ensemble average. The slow algebraic decay
of the velocity autocorrelation function implies a low-frequency behavior

D(w — 0)/D(0) =1—c? (iwty) @272+ ... 2<d<4), Q)
D(w — 0)/D(0) =1—c? In(iwty) + - - (d=2), (3)

with ¢2 > 0. This result indicates that in d < 2 the zero-frequency diffusion
coefficient does not exist, which in turn implies that the ordinary local
hydrodynamic description of a fluid is not valid in low dimensions. This
conclusion is indeed correct, as detailed investigations show.” Note that in
this classical case transport in low dimensions is faster than diffusive. More
generally, it is known that all the transport coefficients in a fluid are given
by time integrals over appropriate time correlation functions, and that all
these time correlation functions have similar LTTs.®

In contrast to this behavior of time correlation functions, the spatial
decay of static correlations at large distances in classical systems in equi-
librium is generically indeed exponential. An exception is the behavior at
critical points. It was known long before the discovery of LTTs that at
these isolated points in the phase diagram correlations decay algebraically
in both time and space, i.e., like power-laws with universal critical expo-
nents.®'Y Algebraic decay implies scale invariance, i.e., the correlation
functions are generalized homogeneous functions of space and time. Cor-
relations that exhibit scale invariance in an entire region of the phase
diagram, rather than just at isolated points, are said to exhibit generic scale
invariance (GSI).'? In this language, the LTTs are an example of GSI in
the time domain.

A natural question is what happens to the correlation functions that
exhibit GSI as a critical point is approached, and how these correlations
influence the critical behavior itself. We will see below that the mechanism
that causes the LTTs in the entire fluid phase typically becomes amplified
near critical points and leads to nontrivial (i.e., non-van Hove) critical
dynamics, or critical singularities in various transport coefficients. Viola-
tion of the van Hove picture for the slowing down of critical fluctuations
became apparent when the thermal conductivity of fluids was found to
diverge at the critical point, while the viscosity of liquid mixtures exhibited
a weak divergence at the consolute point.!® These singularities were later
understood to be due to mode-coupling effects by Fixman,"® and then by
Kadanoff and Swift"® and by Kawasaki.'® Here mode-coupling means
the coupling of products of slow hydrodynamic modes, or excitations, that
are in some sense orthogonal to single hydrodynamics modes, to the single
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modes whose correlations form the correlation functions in question. His-
torically, the LTTs were discovered after these critical singularities were
observed, and it turned out that they, too, are caused by mode-coupling
effects.®

In a classical system in a nonequilibrium steady state (NESS) the
situation is still more complicated. As we will discuss at the end of the first
part of the present paper, in this case the same mode-coupling correlations
that lead to the equilibrium LTTs and to the critical singularities, also lead
to GSI in spatial correlations.

In recent years there has been a separate but analogous development
in the study of electronic systems at zero temperature.'” In this case the
mode-coupling effects are stronger than in classical systems, leading to even
more dramatic effects. For example, they lead to the localization of elec-
trons in disordered two-dimensional systems, even for arbitrarily weak
disorder.® In addition, because of the coupling of the electron dynamics
to the various electronic correlation functions, and because of the coupling
between statics and dynamics that is inherent in quantum statistical
mechanics," it turns out that in zero-temperature systems, GSI exists in
both spatial and temporal correlations even in equilibrium. In disordered
systems these many-body quantum phenomena are known as weak-
localization effects,® since they can be considered precursors to an
Anderson or Anderson—Mott metal-insulator transition,?"?® but analo-
gous, if slightly weaker, effects also occur in clean quantum systems. In the
second part of this paper we explain these phenomena, making connections
with the GSI in classical systems. We then explore how these generic corre-
lations influence, and are themselves modified by, critical behavior at
quantum phase transitions. The latter are defined as phase transitions that
occur at zero temperature and are triggered by some non-thermal control
parameter, like pressure or composition.® 29 The metal-insulator transi-
tions mentioned above are examples of quantum phase transitions.

As noted above, in the classical case the basic source of the power-law
decay characteristic of GSI is two-fold. First, soft or massless modes must
exist. Their softness can arise either from some basic underlying conserva-
tion law, or they can be Goldstone modes, i.e., arise from a spontaneously
broken continuous symmetry. Second, the theory must in some sense be
nonlinear, so that these soft modes couple to the physical observables. It is
this coupling that is missing in simple theories, and this omission results in
the erroneous prediction of exponential decay. In both classical and
quantum systems such coupling mechanisms exist, and in this way the GSI
effects found in both systems are related.

The above discussion illustrates that it is incorrect to view LTT effects,
as it is sometimes done, as only leading to small corrections to transport



Long-Time Tails, Weak Localization 377

coefficients, with no deeper importance. To the contrary, as we have
pointed out, they are responsible for a myriad of effects. Not only do LTTs
cause the leading frequency and, in the quantum case, temperature correc-
tions to the transport coefficients, but there are numerous cases where their
effects are greatly magnified, and they dominate the physics both qualita-
tively and quantitatively. Examples include, systems in reduced dimensio-
nalities, systems near critical points, systems in Goldstone phases, and
nonequilibrium systems. One of the goals of this paper is to illustrate how
these effects come about, and how they are connected.

We will proceed as follows. In Section 2 we present the dynamical
equations that describe fluctuations in a classical fluid. We use these equa-
tions to first describe the LTTs in a classical fluid, and then to describe cri-
tical dynamics near a liquid-gas critical point. We conclude this section by
describing the GSI that occurs in spatial correlations in a nonequilibrium
fluid. In Section 3 we consider the weak-localization effects in disordered
electron systems, which are quantum analogs of the classical LTTs.
Because in quantum statistical mechanics these dynamical correlations
couple to the static correlations, they lead to GSI in spatial correlations
even in equilibrium systems, as long as they are at zero temperature. We
then discuss how this GSI is important for describing quantum phase tran-
sitions such as the ferromagnetic transition in itinerant electron systems at
zero temperature. This amounts to a discussion of how the quantum LTTs
affect quantum phase transitions. We also discuss how nonequilibrium
effects lead to even longer-range correlations in quantum systems at zero
temperature. We conclude with a discussion of our results in Section 4.

2. GSI AND PHASE TRANSITIONS IN CLASSICAL SYSTEMS

2.1. Fluctuating Hydrodynamics

To be specific, let us consider a classical fluid as an example of a finite
temperature, or classical, statistical mechanics system. In general we are
interested in the long-time and large-distance behavior of systems, so we
will always be concerned with the identification of the relevant soft, or
hydrodynamic, variables that determine this behavior. In our case they are
the conserved variables of mass density p, momentum density g = pu, with
u the fluid velocity, and energy density €, and the relevant low-frequency
and long-wavelength dynamical equations are the Navier—Stokes equations.
To describe fluctuations, a Langevin force is added so that the equations
are®
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0, p+V-g=0, “)

0, 8. +V,(gut) = —V, p+V, [n(vuu,; V)

H- D)o wer, | ©

pT(0,+u-V)s=V,(AV,T+q,). ()

Here p is the pressure, 7' the temperature, # the shear viscosity, { the bulk
viscosity, and A the thermal conductivity, and a summation over repeated
indices is implied. We have chosen to use the entropy density s, rather
than the energy €, as our hydrodynamic variable, and in Eq. (6) we have
neglected a viscous dissipation term that represents entropy production
since it is irrelevant to both the leading LTTs, and to the leading critical
dynamics singularities. The Langevin forces P,; and g, are uncorrelated
with the initial velocity, and satisfy

(Poy(x, 1) Py(X's 1)) = 2y T [n(am,,a,,»v £5,3)

< (d D >aﬂ5 ]5(}( x)o(t—1), (7)

(%, 1) qp(X', 1)) = 2ky AT? 9,5 O(x—X') 3(t - 1), ®)
(Py(x, 1) q,(X', 1)) =0, (€)

where &y is Boltzmann’s constant. The above equations can be derived in a
number of ways and are known to exactly describe the long-wavelength
and low-frequency fluctuations in a fluid.®”

2.2. Long-Time Tails

To illustrate the LTTs we choose a slightly different example than the
self-diffusion coefficient discussed in the Introduction, namely, the shear
viscosity of a classical fluid. We present a simplified calculation of this
transport coefficient, and then discuss more general results. For simplicity,
we assume an incompressible fluid. The mass conservation law is then
trivial,

V-u(x, 1) =0, (10)
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and the momentum-conservation law is a closed PDE for u,
O, uy+(u-V)u, ==V, (p/p)+vWVu,+VyPy/p. (1D

Here v=1#/p is the kinematic viscosity, which we assume to be constant.
The only role of the pressure term is to ensure that the incompressibility
condition is satisfied. In fact, it can be eliminated by taking the curl of
Eq. (11), which turns it into an equation for the transverse velocity, see
ref. 28 and below. The cause of the LTTs is the coupling of slow hydrody-
namic modes due the nonlinear term in Eq. (11). We treat that term as a
perturbation, i.e., we formally multiply it by a coupling constant y (whose
physical value is unity), and calculate its effect to first order in .
We first define the velocity autocorrelation function,

Cos(k, 1) = Cu,(k, 1) ug (=K, 0)), (12)

with k the spatial Fourier transform variable. An equation for C can be
obtained by Fourier transforming Eq. (11), multiplying by uz(—k, 0), and
averaging over the noise while keeping in mind that the noise is uncorre-
lated with the initial fluid velocity. In the case of an incompressible fluid we
need to consider only the transverse-velocity correlation function, C, . This
is easily done by multiplying with unit vectors, k¥ (i = 1,..., d—1), that are
perpendicular to k, which eliminates the pressure term. We obtain

(0, +vk?) C, (k, t) = —iyk, kD,kD, Y u,(k—q, 1) u,(q, ) us(—k, 0)),
q
(13)

where we have used the incompressibility condition, Eq. (10), to write all
gradients as external ones. To zeroth order in y we find, with the help of
the f-sum rule®-3® C, (k, t = 0) = k3 T/ p,

C. (&, 1) = (ksT/p) e X"+ 0(y). (14)

This is the standard result obtained from linearized hydrodynamics, which
predicts exponential decay for k # 0. To calculate corrections due to the
nonlinearity, we need an equation for the three-point correlation function
in Eq. (13). The simplest way to do this is to use the time translational
invariance property of this correlation function to put the time dependence
in the last velocity, and then use Eq. (11) again.®” The result is an equation
for the three-point function in terms of a four-point one that is analogous
to Eq. (14). To solve this equation, we note that, due to the velocity being
odd under time reversal, the equal-time three-point correlation function
vanishes. By means of a Laplace transform, one can therefore express the
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<>

Fig. 2. Leading contribution to the self energy 2. The internal propagators are given by the
transverse velocity autocorrelation function.

three-point function as a product (in frequency space) of the zeroth order
result for C,, Eq. (14), and the four-point function. To leading (i.e.,
zeroth) order in y the latter factorizes into products of velocity autocorre-
lation functions. Upon transforming back into time space, and to quadratic
order in the coupling constant y, we thus obtain®

(0, +vk?) C, (k, 1)+ f "drE(k, 1—1) C, (k, 1) =0, (15)
0
with

2k, 1) =7 L ke kD KD 5 3 1Cy (0,0
B p
X Cuk =B ) +Coa(® 1) Cpk =B, 01+0GD).  (16)

The self-energy X is proportional to k2, and thus provides a renormaliza-
tion of the bare viscosity v. For later reference we mention that diagram-
matically the above contribution to X' can be represented by the one-loop
diagram shown in Fig. 2. Equation (16), and its representation by Fig. 2,
illustrate the meaning of the term “mode-coupling” as explained in the
Introduction.

The source of the LTTs is now evident. In our model of an incom-
pressible fluid, only the transverse component of C,; is nonzero,

Cop(p, 1) = (9up — PuBp) CL (D> 1) 17

Putting y=1, and defining ov(¢) =lim, , Z(k, 1)/k? one obtains for
asymptotically long times

kyT [ d?—2 1
ov() = W <a’(d+ 2)) (8ve) 7 (18)

This is the well-known contribution of the transverse-velocity modes to the
LLT of the viscosity.®? In a compressible fluid, a similar process coupling
two longitudinal modes also contributes to the leading LTT. The other
transport coefficients, e.g., A and {, also show LTTs proportional to 1/,
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and all of them have also less leading LTTs proportional to 1/¢“*+Y/2 or
weaker. 32

The correction to the kinematic viscosity is given by the time integral
over 0v(t), and for the frequency-dependent kinematic viscosity the Fourier
transform of Jv(¢) implies a nonanalyticity at zero frequency. More
generally, for the frequency or wavenumber-dependent transport coeffi-
cients, the LTTs imply the asymptotic forms

W)/ u(0)=1—clj 07 (19)
p(K)/p(0) = 1—b7 [K[*2+ -, (20)

where u represents any of the transport coefficients, v, {, A, or D, in a fluid.
The prefactors ¢/ and b/ are positive.

Of particular interest for the critical dynamics near the liquid-gas cri-
tical point is a contribution to J4 from the coupling of the transverse-
velocity fluctuations to the entropy fluctuations. Before performing the
wavenumber integral, this particular contribution, which we denote by
S ,, is@+ 1D

1
0’

00,00 == Y 1(p) Y (k-pP)2 e v +orvb 1)
] ‘

1

Here D, = A/p c, is the thermal diffusivity in terms of c,, the specific heat
at constant pressure. y is the order parameter susceptibility for the phase
transition, where we have anticipated that near the critical point we will
need the momentum-dependent y, and p, =p+k/2. Setting k=0 and
carrying out the momentum integral leads to a =¥/ LTT. The correction to
the thermal conductivity is obtained by integrating dA(¢) over all times, as
in the case of the kinematic viscosity.

These results imply that for d < 2, conventional hydrodynamics does
not exist. Indeed, it is now known that for these dimensions the hydrody-
namic equations are nonlocal in space and time. For a discussion of this
topic we refer the reader elsewhere.”

By examining Eq. (16) or (21) one easily identifies a mechanism by
which the LTT effects can become even stronger. Consider a system with
long-range static correlations, for instance due to Goldstone modes, or due
to the vicinity of a continuous phase transition. In either case, some sus-
ceptibilities, e.g., the y in Eq. (21), become long-ranged, amplifying the
LTT effect. In the next section we discuss the realization of this scenario in
the vicinity of a phase transition. We note that in certain liquid crystal
phases some susceptibilities behave as 1/k? amplifying the LTT effect and
causing a breakdown of local hydrodynamics for all dimensions d < 4.¢%
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We make one last point concerning the LTTs. So far we have stressed
the leading tails that decay like z~%/2 but their are numerous subleading
LTTs as well. Most of them are uninteresting, but one becomes important
near the critical point, via the mechanism discussed in the last paragraph.
According to Eq. (21), a central quantity for determining the critical con-
tribution to A is the shear viscosity # (which enters v). It turns out that the
contribution to # that is dominant near the critical point is a subleading
LTT away from criticality. It involves a coupling of two heat or entropy
modes and is given by®?

4 1 Ly
ok, 1) =15 ; x(p) x(k—p) <m—m>

% (f(l p)>? e~ DrlP’+k—p)*] g (22)

with 4 a constant. Away from the critical point, this LTT decays as t~@/2*2,
so in fact it is a next-to-next leading LTT. Nevertheless, it is the dominant
mode-coupling contribution to # near the critical point because of the two
factors of y in the numerator of Eq. (22). We discuss this enhancement of
LTTs by critical susceptibilities further in the next subsection.

2.3. Critical Dynamics

Near continuous phase transitions, fluctuations grow and ultimately
diverge at the critical point. For the liquid-gas critical point the order
parameter is the difference between the density and the critical density, and
the divergent fluctuations are the density fluctuations as described by the
density susceptibility. The susceptibility y in Eq. (21) is proportional to this
divergent susceptibility, which in the Ornstein—Zernike approximation
behaves as

x(p) < (23)

1
P+l
with p measured in suitable units, and r the dimensionless distance from the
critical point. Carrying out the time integral, the leading singular contribu-
tion to the static, wavenumber-dependent thermal conductivity is'V

! % (kpP)?
530 == 3 1(p) 5T 24)
p’ % vp2 +Drp}
Using Eq. (23) in this equation we see that the homogeneous thermal con-
ductivity is infinite at the critical point for all d < 4, diverging as |r|~*~9/2,
This is result of the amplification of the LTT by the critical fluctuations.
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By the same mechanism, we see that Eq. (23) leads to a logarithmically
singular contribution to Jz, if we take into account that Eq. (24) implies
that at the critical point, Dy (k) ~ |k|?~2

The above are one-loop calculations that use the Ornstein—Zernike
susceptibility. To go beyond these approximations one needs to (1) use the
correct scaling form for the susceptibility, and (2) use either a self-consis-
tent mode-coupling theory,® or a renormalization group approach®>!) to
improve on the one-loop approximation. The result"? is that the thermal
conductivity diverges like

Ao |r| ™, 25)
and that the thermal diffusivity vanishes like
Dy oc |r|*". (26)
107"
- 107°
NV:
£
)
o
O 8043 K
Dy v 305.2 K
- 0 3079 K
1077 | + 3043 K A 3131 K i
F x 305.2K 0 323.1 K
3 » 3079 K ¢ 3481 K
1 i i H i
100 300 600 700 900

Density, kg m ~

Fig. 3. The thermal diffusivity D, =A/pc, of carbon dioxide in the critical region as a
function of density at various temeratures (7, = 304.12 K). The symbols indicate experimental
data for D, measured directly, and for 1/p ¢, deduced from thermal-conductivity data. The
solid curves represent values calculated from the mode-coupling theory. From ref. 36.
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This is in good agreement with experimental results, as shown in Fig. 3,
which compares experimental and theoretical results for the thermal diffu-
sivity of carbon dioxide in the critical region.

2.4. Nonequilibrium Effects

We now turn to a fluid in a nonequilibrium steady state. It has been
known for some time that these systems in general exhibit GSI in spatial
correlations, and that the order parameters for phase transitions in such
systems couple to these long-range correlations. The first study of a phase
transition of this type considered phase separation in a binary liquid under
shear.®” The spatial correlations responsible for the GSI are closely related
to those that lead to the LTTs in equilibrium time correlation functions.
We will consider a fluid in a steady, spatially uniform temperature gradient
VT, but far away from any convective instability. Further, we use a number
of approximations that enable us to focus on the most interesting effects of
such a temperature gradient. For a justification of this procedure, as well as
the underlying details, we refer to ref. 38.

Focusing on the coupling between fluctuations of the transverse fluid
velocity u, and temperature fluctuations 67, and neglecting the nonli-
nearity in Eq. (5), Egs. (2.1) can be written

1
atul,a = vvzul,m +[T (V/)’Paﬂ)J_ > (27)
0

0, 0T +(u-V) T = D,V?6T +

e (V. (28)

where p, and T, indicate average values. These bilinear equations can be
solved by means of Fourier and Laplace transformations. Focusing on
static or equal-time correlations, one finds, for example, ®®

NI a_/’ PkBT(O‘TlAH -VT)*
Wopty = plat () +P2TEELND o)
. k, -VT
(R, -2()) Op(—K)> = phyTar "0ms, (30)
with,
_—=1/70dp
= (ar), o

the thermal expansion coefficient.
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There are several remarkable aspects of these results. First, Eq. (29)
for the density correlations implies that the first term, which also exists in
equilibrium, is delta-function correlated in real space, while the second
term decays like const.— x| in three-dimensions, with |x| the distance in
real space.®**Y Equation (30) shows that the transverse momentum-density
correlation functions decays as 1/|x| in three-dimensions. Both of these
results show that spatial correlations in a NESS exhibit GSI. Second, the
right-hand side of Eq. (30) is essentially the integrand in Eq. (24), which
shows the close connection between the LTTs, singularities in transport
coefficients near continuous phase transitions, and the GSI of spatial cor-
relations in a NESS.

The nonequilibrium fluctuations arise from a coupling between the
temperature fluctuations perpendicular to the temperature gradient and the
transverse-momentum (viscous) fluctuations parallel to the temperature
gradient.®® ¥ 4D The amplitudes of these fluctuations can be measured by

801 m k=1607cm™!
A 1856

o 1879
60 -

Ar 4]

n-hexane

124

Ay 84

0 10 20 30 40

2
%" (10™°K% em?)

Fig. 4. Amplitudes 4, and 4, of the nonequilibrium temperature and transverse-momentum
(viscous) fluctuations in liquid hexane at 25°C as a function of (VT")*/k*. The symbols indi-
cate experimental data. The solid lines represent the values predicted by Egs. (31). From
ref. 42.
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small-angle light-scattering experiments. Specifically, the dynamical struc-
ture factor S,,(k, 1) = (dp(k, 1) p(—k, 0)>, which is proportional to the
scattering cross section, in a NESS has the form®

Syp(k, 1) = Sy[(1+Ar) e — 4, e+, (32)
where S, is the structure factor in equilibrium, and

¢,v/Dy (ky -VT)?
- 33
" r(-D%) k* (33)
P (k, -VT)?
‘U T(*=D%)  k*

34

For ¢t = 0 one recovers the equal-time density correlation function, Eq. (29).
The amplitudes 4, and A4, are proportional to (VT )?/k*, which has been
verified by experiments, see Fig. 4. The agreement, with no adjustable
parameters, is excellent. Notice that the amplitude of the temperature fluc-
tuations is enhanced by a factor of a hundred compared to the scattering
by an equilibrium fluid.

0 i L r 1
0 1 2 3 4

VI /K (x10° K cm))

Fig. 5. Amplitude 4, of nonequilibrium concentration fluctuations in polystyrene and
toluene solutions at 25°C as a function of (VT')%/k*. The symbols indicate experimental data
at polymer mass fractions w =4.00% (solid symbols) and w = 0.50% (open symbols), respec-
tively. Different symbol shapes correspond to different values of the wave number k. The solid
lines are linear fits to the experimental data in agreement with the theoretical predictions.“®
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In a liquid mixture or a polymer solution, a temperature gradient
induces a concentration gradient due to the Soret effect. Nonequilibrium
concentration fluctuations then arise from a coupling between the concen-
tration fluctuations and the transverse-momentum fluctuations.“ *¥ Just
as in the case of the nonequilibrium temperature and viscous fluctuations,
the amplitude of the nonequilibrium fluctuations will also be proportional
to (VT)?/k* The presence of such long-range nonequilibrium concentra-
tion fluctuations has also been confirmed experimentally, see Fig. 5.

One final point concerns the question what these generic long-range
spatial correlations would do to critical behavior. This is a natural ques-
tion, as usually long-range interactions, or long-range correlations, fun-
damentally modify important aspects of any phase transition. This ques-
tions has been addressed elsewhere in the context of phase transition in
nonequilibrium, or driven, classical systems.®“® In the remainder of this
paper we study the analogous question in the context of quantum, or zero-
temperature, phase transitions in equilibrium systems.

3. GENERIC SCALE INVARIANCE AND PHASE TRANSITIONS IN
QUANTUM SYSTEMS

3.1. Field Theory

We now turn to a quantum fluid, specifically, to systems of interacting
electrons in solids. Since we will again be interested in effects at long wave-
lengths and long times, the ionic lattice and effects resulting from it will be
irrelevant for our purposes, and we therefore adopt a simple “‘jellium”
model of free electrons interacting via the Coulomb interaction in the
presence of a charge neutralizing homogeneous background. There are
various ways to theoretically deal with this many-body problem, but the
most powerful one for our purposes is a field-theoretic formulation of
quantum statistical mechanics. This method" starts by writing the parti-
tion function in terms of a functional integral,

Z= D[y, y] 504, 35)
Y(0) = —y(1/kpT)

Here D is a functional integration measure with respect to fermionic, i.e.,
Grassmann valued, fields Y and y that are defined on a real-space/imagi-
nary-time manifold with the time sector spanning the interval [0, 1/kzT].
The action S for our model system reads

S= [ dx ¥ F,(x) [ = 0.+ V*/2m+ 1] Y, (X) + S (36)
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Here x = (x, 7) with x denoting position, 7 imaginary time, and ¢ is the
spin index. | dx = [ dx [(/**" dt, m is the electron mass, and y is the chemi-
cal potential. At T =0, u =k /2m with k; the Fermi wavenumber. Here
and in what follows we use units such that i = 1. At the most basic level of
the theory, S, represents the Coulomb potential, but it often is advan-
tageous to integrate out certain degrees of freedom to arrive at effective,
short-ranged interactions.“” For our purposes we do not need to specify
the precise form of S, it will suffice to postulate that the ground state of
the interacting system is a Fermi liquid.

It is useful to go to a Fourier representation with wavevectors k and
fermionic Matsubara frequencies w, = 22T (n+1/2),

VoK) =/T/V [ dx e™ @y (), (37)
Vn oK) =/T/V [ dx =20 (). (38)

From Eq. (36) it follows that, in a free-electron system, single-particle exci-
tations about the Fermi surface are soft with a linear dispersion,

z
iCO” —Urq

Wi o (6) Y (P)Dg 0 = .y O O , (39

w, =0

with Z=1, g=|k|—kg, and vg=kg/m the Fermi velocity. Here
(-+>=[D[Y,y]...e5/Z comprises both a quantum mechanical and a
thermodynamic average. Fermi liquid theory shows that Eq. (39) remains
valid in the presence of S,,, only the values of Z and vy are changed

compared to a free electron gas.“® Similarly, there are soft two-particle
excitations. For instance, the susceptibility

Y Y AW o (k@) Y o ()W, (P— Q) Y, o (P))D (40)

k,p n'.m'

diverges for q=0, nm <0, and 2, ,,=w,—w, —0 like 1/|Q, .| At
nonzero external wavenumbers |q|, the wavenumber scales like the
frequency, so the dispersion of the soft modes is again linear.

In many solid-state electronic systems, quenched disorder is present in
the form of impurities or lattice defects. This has important consequences
for the transport and thermodynamic properties of the system, and we
model it by means of a term in the action

Sus = [ dx u(x) T 7,(x) ¥, (). @1)
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Here u(x) is a static, random potential governed by a distribution P[u].
For simplicity, we take u(x) to be delta-correlated and Gaussian distrib-
uted with the second moment of P given by

1
7V FTrel

{u(x) u(y) }as =

d(x—y), (42)

Here {--- }4 denotes the disorder average, 7 is the elastic relaxation time,
and Ng is the density of states at the Fermi surface. In the presence of S,
the single-particle excitations, Eq. (39), are obviously massive with a mass
proportional to 1/7,,. However, two-particle excitations are still soft. In
contrast to the clean case, their dispersion relation is diffusive. For
instance, the disorder averaged analog of the two-particle propagator given
in Eq. (40) has the form™®

= n,’m,{<(¢n,a(k+q) l//m,a(k))(lpn’, y'(p_q) lpm’, a’(p))>}dis oC ma

(43)

where the diffusion coefficient D is proportional to 7,;. In both the clean
and the disordered cases, the two-particle excitations have the same form
for different combinations of the spin indices.

Notice that the softness of the two-particle excitations is not related to
any conservation law, i.e., the combinations of fermion fields do not cor-
respond to a density or, in the clean case, a current. Rather, these excita-
tions are the Goldstone modes resulting from the spontaneous breaking of
the symmetry between positive and negative Matsubara frequencies. The
order parameter that belongs to this symmetry is the quantity

Q= lim () ¥, ()= M o () Uho(0>,  (44)

which is the single-particle spectral function, or the difference between the
retarded and advanced Green functions. Since the causal Green function
has a cut on the real axis, Q is nonzero as long as the density of states at
the Fermi surface is nonzero. This connection between the single-particle
spectral function and the soft mode spectrum was discovered by Wegner
for the disordered case,” and has been elaborated on in refs. 50, 51,
and 47.
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3.2. Long-Time Tails and Spatial GSI in Equilibrium

3.2.1. Long-Time Tails, a.k.a. Weak-Localization Effects

At zero temperature, a clean electron system has an infinite diffusivity
or conductivity, so we start our discussion with the disordered case. One
expects the mode-coupling argument given in Section 2 to still apply, with
the transverse-velocity modes of Eqs. (14) replaced by the diffusive modes
of Eq. (43). Since the dispersion relation is the same in both the classical
fluid case and the disordered electron case, we thus expect a LTT in the
real part of the conductivity that takes the same functional form as
Eq. (19), viz.

— o d-2)/2
0= . 4
o(w)/o l—cjw 45)

This expectation is indeed borne out by an explicit calculation for both
noninteracting® and interacting® electrons. It turns out, however, that
the coefficient ¢ is negative, in contrast to the classical case. This differ-
ence in the sign of the LTT is due to the fact that the scatterers that lead to
a finite conductivity in the quantum case are static, while in the classical
fluid they are the moving fluid particles themselves. The strength of the
LTT, on the other hand, is the same in both cases due to the strong
similarity of the respective soft mode spectra.

In this context it is interesting to point out that another, and in some
sense closer, classical analog of the quenched disordered electron fluid is
the classical Lorentz gas, which consists of noninteracting classical particles
moving between static scatterers.*® The diffusivity in this case also shows a
LTT with the same sign as in the quenched disordered quantum case (and
for the same reason), but the strength of the LTT is weaker, viz. ®¥? in
frequency space or 1/¢“*?/2 in time space. The reason is that in the classi-
cal Lorentz gas there is no analog of the spontaneously broken symmetry
mentioned above, and the only soft mode (which is diffusive) is due to
particle number conservation.®® There are thus many fewer soft modes
than in either a classical fluid or a disordered electron system, which leads
to a weaker mode-coupling effect and, hence, to a weaker LTT. Indeed, at
nonzero temperature the w2/ dependence in Eq. (45) gets transformed
into a 7@~?/2 behavior, and in the limit ®w — 0 at fixed 7 > 0 one recovers
the result for the classical Lorentz gas. This example illustrates that for the
purpose of comparing LTT effects in different systems the crucial criterion
is how similar the soft-mode spectra are. In this respect the disordered
electron system, even without electron-electron interactions, is closer to the
classical fluid than to its classical limit, the classical Lorentz gas.
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Fig. 6. Conductivity data from ref. 56 showing the static conductivity of ten Si : B samples
in a magnetic field plotted against ﬁ at low temperatures. From ref. 23.

The fact that a nonzero temperature cuts off the LTT singularity pro-
vides the most convenient way to experimentally observe the phenomenon
in electronic systems, since the dynamical conductivity is hard to measure.
Fig. 6 shows the ﬁ dependence of ¢(w=0,7) in bulk Si : B. In 2-d
systems, realized by thin metallic films, the zero exponent in Eq. (45)
translates into a logarithmic frequency or temperature dependence within a
large dynamical range, like in the classical case, Eq. (3). An experimental
example of this phenomenon is shown in Fig. 7.

These LTTs in disordered electron systems are known as “weak-
localization effects.” This is because they can be considered precursors of
the “strong localization™ that occurs in systems with very strong disorder,
which undergo a phase transition from a metal to an insulator as a func-
tion of the disorder.®” In two-dimensions the weak-localization effects are
strong enough to prevent the formation of a true metal altogether,™® and
as a function of increasing disorder the system undergoes a crossover from
a weak insulator to a strong one. Systems in d < 2 are always localized, or
insulating, irrespective of the strength of the disorder, at least for nonin-
teracting electrons.®”
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Fig. 7. Resistance data from ref. 57, for a thin PdAu film. The resistance R, normalized to
R, = R(T = 1K), is plotted versus log 7. From ref. 58.

3.2.2. Generic Scale Invariance in Equilibrium

In quantum statistical mechanics, as opposed to the classical theory,
there is an intrinsic coupling between statics and dynamics. This is mani-
fested by the basic fermionic fields } and i being functions of both space
and (imaginary) time. Consequently, one expects effects similar to the
LTTs in time correlation functions to appear in static correlation functions,
even in equilibrium. As an example, let us consider the wavenumber
dependent static spin susceptibility y, in a disordered electron system.
Given that the wavenumber scales like the square root of the frequency,
Eq. (43), it is natural to guess that y, at small wavenumbers has the form

x:(@) = co—cq_s |‘I|d_2+ 0(‘12)- (46)

The coefficients ¢, and c,_, are both expected to be positive. This is
because the quenched disorder slows the electrons down, which leads to an
increased effective electron-electron interaction. Consequently, the disorder
enhances ¢, compared to the value of the homogeneous spin susceptibility
in a clean system, and the susceptibility decreases with increasing wave-
number. This is the same effect that leads to a positive coefficient ¢J in
Eq. (45). This result is confirmed by explicit calculations.® This nona-
nalytic wavenumber dependence, which for dimensions 2 <d <4 is the
dominant one, corresponds to a 1/r*?~! decay in real space. We see that
the coupling between statics and dynamics produce GSI in quantum
systems even in equilibrium. Note that this effect is much weaker than the
GSI seen in non-equilibrium classical (see Section 2.4) or quantum (see
Section 3.4 below) systems.
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Detailed calculations show that the origin of the GSI can be traced, as
the above argument suggests, to the same Goldstone modes that lead to the
LTTs and were discusssed in the previous subsection. The relevant contri-
bution to y, can be schematically represented by the integral

4 -1 @
ul apr fdw (0+T+p*” @D
with 4 a microscopic wavenumber. Equation (47) demonstrates the coupl-
ing between statics and dynamics mentioned above. Notice that for power-
counting purposes the integrand is again a product of two diffusive modes.
At T =0, the integral yields Eq. (46), and at 7 > 0 the temperature cuts off
the leading singularity as discussed in Section 3.2.1 above. In contrast to
the LTT of the previous subsection, the above results hold for interacting
electron systems only. For noninteracting electrons, the absence of
frequency mixing prevents the coupling of the static spin density fluctua-
tions to the soft modes, and y, is analytic at zero wavenumber.

One might expect all static correlation functions to display such
nonanalytic wavenumber dependences, but this turns out not to be true.
For instance, the particle number density susceptibility does not have a
leading singularity analogous to that in y,, and neither does any other spin-
singlet particle-hole susceptibility like, e.g., the number density current
susceptibility. This is because these observables couple less strongly to the
soft modes than the spin density. In ref. 61 general criteria have been
developed that allow to determine which susceptibilities show GSI due to
soft modes, and which do not. This reference also discusses limitations of
the equivalency between statics and dynamics in quantum statistical
mechanics. For instance, it is remarkable that the conductivity in a disor-
dered electron systems shows an w©@~2/? LTT, see Eq. (45), but the corre-
sponding static current susceptibility does not show an analogous |q|*~>
wavenumber dependence. This is because a finite frequency breaks the
symmetry in frequency space that we mentioned in Section 3.1. As a result,
dynamical current fluctuations couple more strongly to the diffusive soft
modes than static ones.

We now turn to the clean case. As we have seen, the only difference
compared to the disordered case is the dispersion relation of the soft
modes, which now is ballistic rather than diffusive, i.e., wavenumbers scale
like frequencies, which leads to weaker LTT and GSI effects. Let us again
consider the static spin susceptibility. From Eq. (47) we expect that, at zero
temperature, there is a contribution to y, that is of the form

4

dppd’lfda) @
I

R 48
@+p) )
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which leads to

1(Q) =ch+cq g +0(q?), (49)

with positive coefficients ¢; and c¢,_;. Explicit calculations confirm this
result.®> % As in the case of the LTTs, the signs of the nonanalyticities in
the clean and disordered cases, respectively, are different. A simple physical
explanation in the present case is that the nonanalyticity is produced by
fluctuation effects that weaken the tendency towards ferromagnetism.
Consequently, they decrease the value of y,(q=0), and with increasing
wavenumber the susceptibility increases.

3.3. Quantum Phase Transitions

In Section 2.3 we have seen how LTTs affect the critical behavior at a
classical phase transition. Here we discuss the analogous problem for a
quantum phase transition.*?*? An example is the ferromagnetic transi-
tion that is observed in, e.g., MnSi,® UGe,,® or ZrZn,® at T=0 as a
function of hydrostatic pressure. A crucial difference between the quantum
and classical cases is that in the latter, due to the lack of coupling between
statics and dynamics, the LTTs affect only the critical dynamics and the
critical behavior of quantities given by time correlation functions, like the
thermal conductivity in the example in Section 2.3. In the quantum case,
however, the LTT/GSI phenomena also influence the critical behavior of
thermodynamic quantities. The easiest way to see this is by deriving an
order-parameter or Landau-Ginzburg—Wilson (LGW) theory for the phase
transition. ¢”

3.3.1. Order-Parameter Field Theory

Let us consider a phase transition with an order-parameter field
n(x) = n(Y(x), Y(x)) that is bilinear in the fermion fields. For example, in
the ferromagnetic case, n is a vector field, viz. the spin density »;,(x) =
Deo v, (x)(o; )o.# Vo (X), With o, (i = x, y, z) the Pauli matrices. In general,
n is a rank-m tensor field. In order for a phase transition to a phase with a
nonvanishing expectation value of n to occur, the interaction term S,,, in
the action must contain an interaction between the order-parameter modes.
This term, which we denote by SoF, reads schematically

int >

S = j dx n¥(x), (50)
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with I" a coupling constant. For simplicity, here and in what follows we
suppress both the spin and tensor labels, and use an obvious symbolic
notation. The full action we write as

S=8,+8%, (51)

with the action S, which we will refer to as the “reference ensemble,” con-
taining all contributions other than S{F

mt *

We now follow Hertz® in deriving an order-parameter field theory
for the phase transition under consideration. To this end, we first decouple
SOF by means of a Hubbard-Stratonovich transformation.® Denoting the

int

Hubbard-Stratonovich field by M, we write the partition function
Z= [ D[y, y] ¥
= const. X f D[ M] eI dx M) o=2T M) no)y,
= const. X f D[M] e~ ™M (52)

where ¢---), denotes an average with the reference ensemble action S,
and @[ M] is the LGW functional. The latter reads explicitly

GLM] =T [ dx M*(x)—In (e 2 1My, (53)
and can be expanded in powers of M,
1 1 (2)
PIM] = [ dx, dx, M(x:) | 0(xi = %) =1 Px, —x;) | M(x)
1
gy | o d ey 7O, xa, %) M) M) M)

+0(M*), 54

where we have scaled M with 1/ ﬁ I'. The coefficients ¥ in the Landau
expansion, Eq. (54), are connected /-point correlation functions of n(x) in
the reference ensemble,

X(l)(xls'--: x;) = {n(x;) -+ n(x;) g (55)
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3.3.2. Local Versus Nonlocal LGW Theories

A crucial question now arises concerning the behavior of the correla-
tion functions defined in Eq. (55). Suppose their Fourier transforms
are finite in the limit of small wavenumbers and frequencies. In lowest
order in a gradient expansion one can then simply localize the cubic and
higher-order coefficients. Defining a Fourier transform of the Hubbard—
Stratonovich field by

M(q)=/T)V j dx e+ (). (56)

we obtain an LGW functional

1
PM] =5 Z M(q) [1/T - x®(q)] M(—q)

Uy

i Z 8(q1+ 42 +43+45) M(q1) M(q,) M(g5) M(q4)

+oo (57)

Here the four-vector ¢ =(q, w,) comprises wavevector and Matsubara
frequency, and we have assumed that y® vanishes at zero frequency and
zero wavenumber. Suppose y® is an analytic function of the wavenumber,

x2(q) =co+ @ +co 12,1/1a]"+ - -, (58)

where the value of m depends on the specific system. Then we obtain an
ordinary Landau theory with the Gaussian part of the LGW functional
given by

PIM] =3 ) M(g) [r+a, ¢*+aq 12,|/14"] M(—9). (59)

Here r=1/I' — y®(q=0) is the bare distance from the critical point at
T = 0. Equation (59) leads to mean-field values for the critical exponents v
and y, and a dynamical critical exponent z =m+2. Power counting shows
that the non-Gaussian terms are irrelevant in the renormalization-group
sense of the word and, hence, the exact critical behavior is also mean field-
like. This is the conclusion that was reached by Hertz,® namely, that
generically quantum phase transitions have mean-field critical behavior.

As we have seen in Section 3.2.2, however, this scenario does not
necessarily apply. Equation (46) provides an example of a susceptibility
that does not have the form of Eq. (58) due to GSI effects. Moreover, if the
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nonanalytic wavenumber dependence of the susceptibility y@ is caused by
soft modes that are made massive by an external field H conjugate to the
order parameter (or by a nonvanishing average of the order parameter),
then the singular part of the static, field-dependent susceptibility will have
the form

Xing(a, 2, =0, H) = (lq|*+ H)’, (60)

where y >0 and x>0 are exponents that determine the nature of the
nonanalyticity and the scaling of H with the wavenumber, respectively.
This is true, for instance, in the case of the disordered itinerant ferromag-
net, where x =2 and y =(d—2)/2. Since the higher susceptibilities y®,
1@, etc., can be obtained from y® by differentiating with respect to H, this
implies that they diverge in the limit of zero wavenumbers and frequencies.
That is, the gradient expansion that leads to the usual LGW theory, and
hence LGW theory itself, do not exist. Instead, one obtains a field theory
where the coefficients of the various powers of the field M are singular
functions of wavenumber and frequency. In other words, the field theory is
not local.® The above arguments make it clear that this is a direct conse-
quence of the GSI in the equilibrium quantum system.

Such nonlocal field theories are difficult to handle and not suitable for
explicit calculations. For the purpose of determining the critical behavior
one can try to circumvent this problem by checking whether the field
theory still allows for a Gaussian critical fixed point with respect to which
the higher-order terms are irrelevant by power counting. This was the
approach taken in ref. 60 for the disordered ferromagnetic transition, and it
relied strictly on power counting by taking the divergence of, e.g., the coef-
ficient u, in Eq. (57) into account by assigning it a suitable scale dimension.
It turns out that this procedure yields the correct power laws, but misses
logarithmic corrections to scaling that power counting is not sensitive to. In
the following subsection we use this example to illustrate the interplay
between GSI and quantum critical behavior.

3.3.3. Example 1: The Disordered Quantum Ferromagnetic
Transition

As an example of the interplay between LTT/GSI effects and
quantum critical phenomena, we now consider the quantum critical behav-
ior at the ferromagnetic transition in quenched disordered itinerant elec-
tron systems in d-dimensions. As we mentioned in the last subsection, in
that case the two-point susceptibility y® has the form

1P(q) =co+ca s 1917+ @7+ 12,1/ + - (61)
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This leads to a Gaussian part of the LGW functional

POM] =3 M(q)[r+a,, ld"*+a, q*+aqo |2,|/l*T M(—q). (62)

Furthermore, the field-dependent susceptibility has the form given by
Eq. (60) with x =2 and y = (d—2)/2. This implies that u, in Eq. (57), and
all of the coefficients of higher-order terms in the Landau expansion, do
not exist in the limit of small wavenumbers and frequencies. For instance,
u, behaves in this limit like

uy(lql = 0, 2, =0) =~ /1q|**+uf”, (63)
with 29 and 4 finite numbers.

Let us now look for a Gaussian fixed point that describes the critical
behavior. From Eq. (62) one reads off the Gaussian values of the correla-
tion length exponent v, the susceptibility exponents y and #, and the
dynamical exponent z as

v=1/(d-2), y=1, n=4—d, z=d, (64)
for2<d<4, and
v=1/2, y=1, n=0, z=4, (65)

for d > 4. In d = 4 one finds mean-field exponents with logarithmic correc-
tions to scaling. Power counting suggests that the non-Gaussian terms in
the action are irrelevant with respect to this fixed point, so that these
exponents represent the exact critical behavior. However, for the remaining
exponents, the order-parameter exponents § and J, one needs to take into
account these terms, as is the case in ordinary Landau theory. From
Eq. (60) with x =2 we see that the average order parameter m, which scales
like H, scales like the wavenumber squared. The coefficient u,, Eq. (63),
thus scales like m~%/?, which suggests an equation of state

rm+om?+um’=H, (66)
with u, v > 0. From this we obtain
B=2/(d-2), 0=d/2, 67)
for2<d< 6, and

B=1/2, 6=3, (68)
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for d> 6. In d =6 there are again logarithmic corrections to scaling. A
more sophisticated analysis®” confirms these results, which illustrate the
strong influence of the GSI on the critical behavior: The exponents given in
Egs. (64) and (67) for the experimentally most interesting case d =3 are
very different from the mean-field exponents one obtains if one neglects the
GSI effects.®®

While the above simple power-counting arguments produce the correct
exponents of the exact critical behavior, it turns out that the simple Gaus-
sian fixed point presented above is marginally unstable. This has been
traced to the existence of two time scales, viz. the critical one with dynam-
ical exponent z, and the diffusive one with dynamical exponent 2. The
existence of the latter has been obscured in the derivation of the LGW
theory, which integrates out the diffusive modes. A more careful analysis,
which keeps all of the soft modes explicitly and on equal footing, shows
that the actual critical fixed point is not Gaussian, but has the same expo-
nents as given above, with multiplicative logarithmic corrections to
scaling. ™ A convenient way to account for these corrections is to write the
critical behavior as power laws, with scale-dependent critical exponents.
For instance, the correlation length £ as a function of the distance r from
criticality has a log-log normal correction to the simple power law,

Eac 1/rE=2 g(In(1/r)), (69)
where g(x) is a function whose leading behavior at large arguments is
g(x — 00) = const. x el VI/21(@/D (70)

with ¢(d) a dimensionality dependent constant. This behavior can be
represented by writing & oc #~!/* with a scale dependent exponent v,

1/v=d—2+Ing(b)/In b, (71)

with b an arbitrary renormalization group length scale factor. For instance,
to translate the dependence of b into an r-dependence, one needs to substi-
tute b =r~". For the other exponents, the analysis of ref. 70 yields

z=20=d+Ing(b)/Inb, (72)
n=4—d—Ing(b)/Inb, (73)
B ="2v. (74)

Equations (68) and (70) are valid for 2 <d <4. The exponent y has no
logarithic corrections, and is y = 1 exactly, as stated in Eqs. (63).
The above detailed predictions have yet to be tested experimentally.
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3.3.4. Example 2: The Clean Quantum Ferromagnetic Transition

As a second example we briefly consider the case of a clean ferro-
magnet. In this case, the coefficient u, of the quartic term in the Landau
expansion diverges like 1/|q|“3, and the average order parameter m scales
like the wavenumber. Furthermore, as we have mentioned in Section 3.2.2,
the sign of the nonanalytic term is opposite to that in the disordered case.
This leads to an equation of state

rm—vm+um’=H, (75)
for general d, and
rm+om’Inm’+um®=H, (76)

for d =3, with u, v> 0.9

These considerations suggest that, generically, the quantum ferro-
magnetic transition of clean itinerant electrons is of first order. Indeed, this
is what is observed in MnSi.® see Fig. 8, and in UGe,,® both systems
where the ferromagnetic transition can be triggered at very low tempera-
tures by applying hydrostatic pressure. Both a nonzero temperature and
nonzero disorder cut off the singularity in Eq. (76), and disorder, of course,
induces the stronger singularity shown in Eq. (66). For small values of both
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Fig. 8. Phase diagram of MnSi. The insets show the behavior of the susceptibility close to
the transition as reported in ref. 64. From ref. 72.
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temperature and disorder, the competition between these terms leads to an
interesting structure of the phase diagram, with tricritical points and criti-
cal endpoints. This has been discussed in detail in ref. 71.

3.4. Nonequilibrium Effects

Very recently, spatial correlations of density fluctuations have been
studied in noninteracting disordered electronic system that are not in
equilibrium.™ For the model defined by Egs. (36) and (40), without the
electron-electron interaction term S,, but in the presence of a chemical-

potential gradient Vy, this reference calculated an electron density-scatterer
density correlation function defined by

Ci(x,y) = {£0n(x)> u(y) } as» (77)

where <---) denotes a nonequilibrium thermal average. The calculation
shows that the Fourier transform of Eq. (77), C,(k), behaves like

ik-Vu

Gl =3 D

(78)

In real space, this corresponds to a decay proportional to 1/|x|?~!. This is
the same result as the one in the corresponding classical Lorentz gas, since
the additional soft modes in the quantum system do not couple to C;.

It is also interesting to consider the electronic structure factor,

Co(x,y) = {{on(x) on(y)) } ai- (79

Let us consider the nonequilibrium part of C,. As one would expect, the
calculation yields a result that is analogous to the one in the classical fluid,
Eq. (29), viz.

N FHT el

0 = Gan(D1cy

[25(Vu)?—12(k - Vu)?]. (80)

As in the classical case, this corresponds to a decay in real space like
const.—|x| in three-dimensions. For a classical Lorentz gas one finds
instead

Gy (k) oc (Vi)* /K™ @81

The weaker singularity in this case is due to the fact that the classical
model has fewer soft modes, as we discussed in Section 3.2.1.
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4. CONCLUSIONS

In this paper we have emphasized that the soft modes which always
exist in many-body systems due to either conservation laws or broken con-
tinuous symmetries via Goldstone’s theorem, generically couple to the cor-
relation functions relevant for both scattering and transport experiments,
and lead to power-law correlations in space and time, in the entire phase
diagram. That is, correlation functions usually exhibit generic scale
invariance.

In the classical case we have seen that these GSI effects can get
amplified either in a phase with Goldstone modes, or near continuous
phase transitions. In both cases the crucial point is that the coefficient of a
correlation function exhibiting GSI is proportional to a static susceptibility
that diverges either in an entire Goldstone phase, or at a special critical
point.

The quantum case is of particular interest because of the inherent
coupling between statics and dynamics in zero-temperature systems.
Generically, this implies that systems that exhibit GSI in the time domain
do so in space as well. This has been contrasted to classical systems, where
the equilibrium fluid provides an example of a system that exhibits GSI in
time correlations functions, i.e., that has LTTs, but exponentially decaying
correlations in space. This coupling also leads to the important conclusion
that many quantum phase transitions are in a non-mean field universality
class governed by long-ranged interactions.

Among the many experimental consequences of the particular type of
GSI discussed here we mention, (1) transport coefficients that depend
nonanalytically on the frequency, in both classical and quantum systems,
(2) singularities in transport coefficients near continuous phase transitions,
(3) enhanced, compared to equilibrium, light scattering in nonequilibrium
systems, and, (4) quantum phase transitions that are in different univer-
sality classes than they would be in the absence of these effects. The first
three of these effects have been observed. Regarding the fourth one, the
predicted first order nature of the quantum phase transition in clean
systems has been observed, but the critical behavior in disordered systems
remains to be investigated experimentally.
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